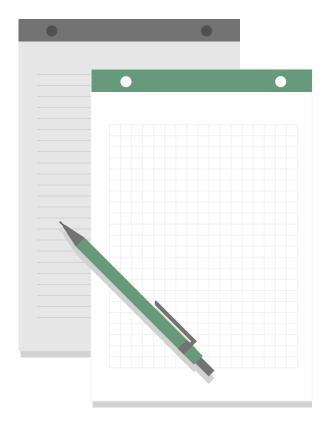
PFAS Treatment: The PFAS Annihilator


2024 Environmental Regulatory Conference Eric Drugotch September 10, 2024

Today's Agenda

- Overview of Revive
- PFAS and why we're here
- Supercritical Water Oxidation
- PFAS Annihilator Program
- Data Review
- NH State Take Back Program
- Questions

Revive Environmental: Snapshot

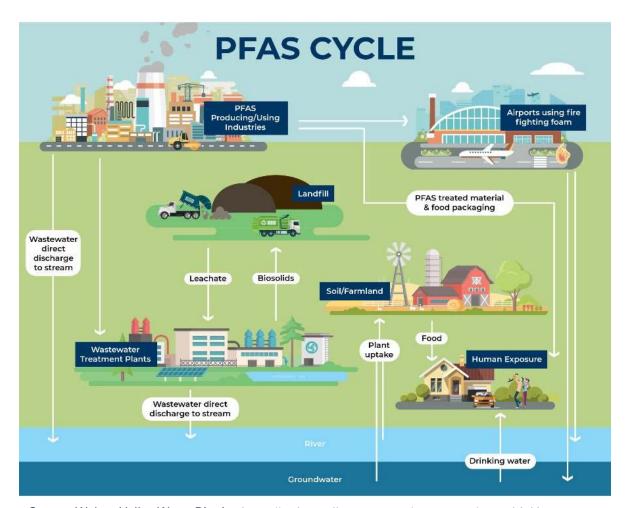
- Water Technology company created in December 2022
- Structure: Founded by Battelle and Viking Global Investors
- Technology: Global Patents on PFAS Annihilator® and GAC RENEW™
- Headquarters: Columbus, OH / CEO: David Trueba
- https://revive-environmental.com/

Target Markets and Applications

AFFF

Landfill Leachate

Industrial Water



Groundwater Remediation

Challenges will Differ by Application/Source

Source: Walnut Valley Water District, https://walnutvalleywater.gov/your-water/your-drinking-water/water-quality/

Drinking Water

- High Volume
- Recurring Continuous
- High amount of co-contaminants

AFFF

- Lower Volume
- Very High PFAS (ppm)
- Concentrate vs
 Rinsewater vs Firewater

Soil Remediation

- High Volume
- Lower PFAS
 Concentrations
- In-Situ vs Ex-Situ

Landfill Leachate

- Very High Volume
- Recurring Continuous
- Low PFAS Concentration
- · Removal via GAC, RO

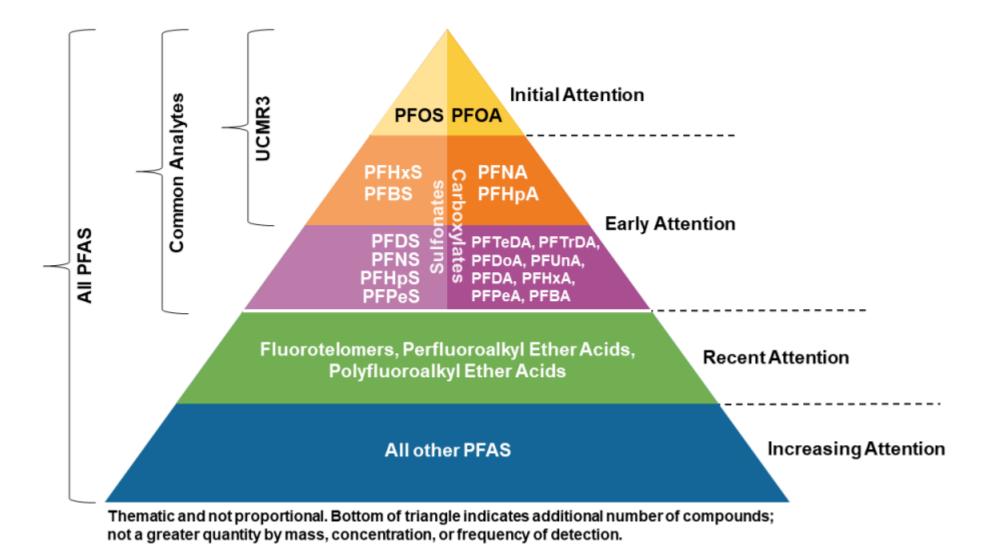
Company Proprietary

New EPA MCLs could require 99.9999% removal

Source: https://www.epa.gov/sdwa/and-polyfluoroalkyl-substances-pfas

Compound	Final Maximum Contaminant Level Goals	Final MCL (enforceable levels)
PFOA	Zero	4.0 ppt
PFOS	Zero	4.0 ppt
PFHxS	10 ppt	10 ppt
PFNA	10 ppt	10 ppt
HFPO-DA (commonly known as GenX Chemicals)	10 ppt	10 ppt
Mixtures containing two	1 (unitless)	1 (unitless)
or more of PFHxS, PFNA, HFPO-DA, and PFBS		
	Hazard Index	Hazard Index

Using PFOA as example...


• If source contains 3,000 ppb (or 3,000,000 ppt)

 Achieving discharge of 4 ppt (or 0.004 ppb)

- Requires <u>99.9999% removal</u>
- (4/3,000,000 = 0.0001%)

Spectrum of Concerning PFAS Contaminants

Existing Methods of PFAS Disposal

Non-destructive Disposal

- AFFF mixed with stabilizer
- Immobilized and encapsulated
- Not all landfills take PFAS
- Readily available, low cost

Well Injection

eeb

Non-destructive

- Injected into tectonically stable strata
- Not available in all states

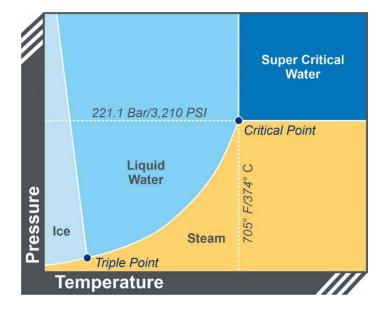
ncineration

Destruction

- Products of Incomplete Combustion (PICs) still being studied
- State Moratoriums

On-Site Storage

- Evaluating alternative disposal options
- Exposure and Spill Risk


andfill.

Technology Overview

What is Supercritical Water Oxidation?

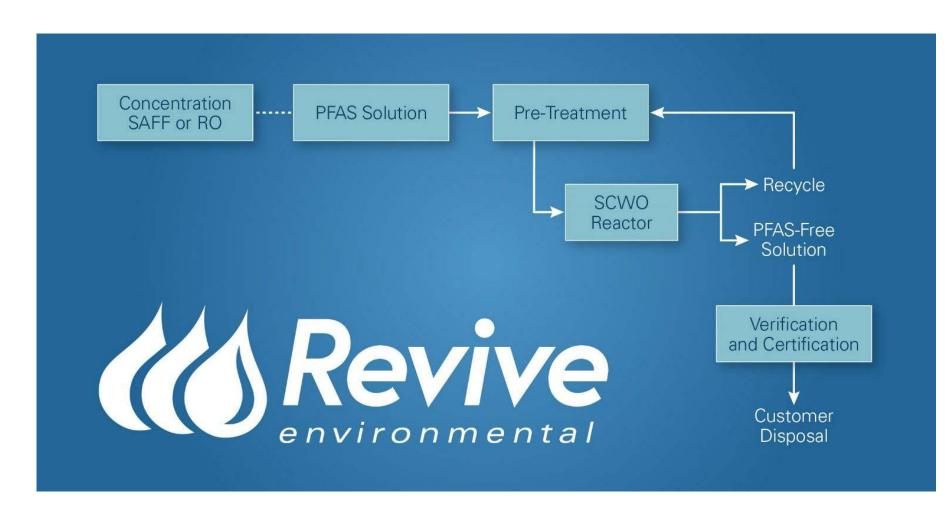
- Supercritical water exhibits unique properties
 - Gas and liquid phases become indistinguishable
 - Density is about 10% of water above the supercritical point
 - Water no longer behaves as a polar solvent
 - Oxygen is fully soluble
- High temperature in an oxidizing environment overcomes activation energy to break C-F bond

PFAS Annihilator®: Tracking, treatment, annihilation

Chain of Custody

Batch receipt tied to analytical data and operating parameters

Influent, Effluent Testing


Regular sampling of all aqueous and vapor streams to ensure full destruction

PFAS destruction

Full combustion of all organic compounds incl. all PFAS analytes

No Harmful Byproducts

SCWO reaction results in clean water, nominal CO₂, and inert salts (e.g., NaF)

PFAS Annihilator® meets EPA Framework and is Ready to Scale

Technology

Ready w/ Capacity to Scale Now

Materials

Already processing AFFF, Leachate, Wastewater

Analytical

Verified by EPA 1633 + Peer Reviewed literature

Efficacy

Broad + Complete Mineralization; no PICs, PIDs, or harmful byproducts

Community

No Environmental Justice concerns/impacts

Regulatory

Operating + permit-compliant in multiple states

Batch-by-Batch Confirmation of

Certificate of Annihilation (verified analytical)

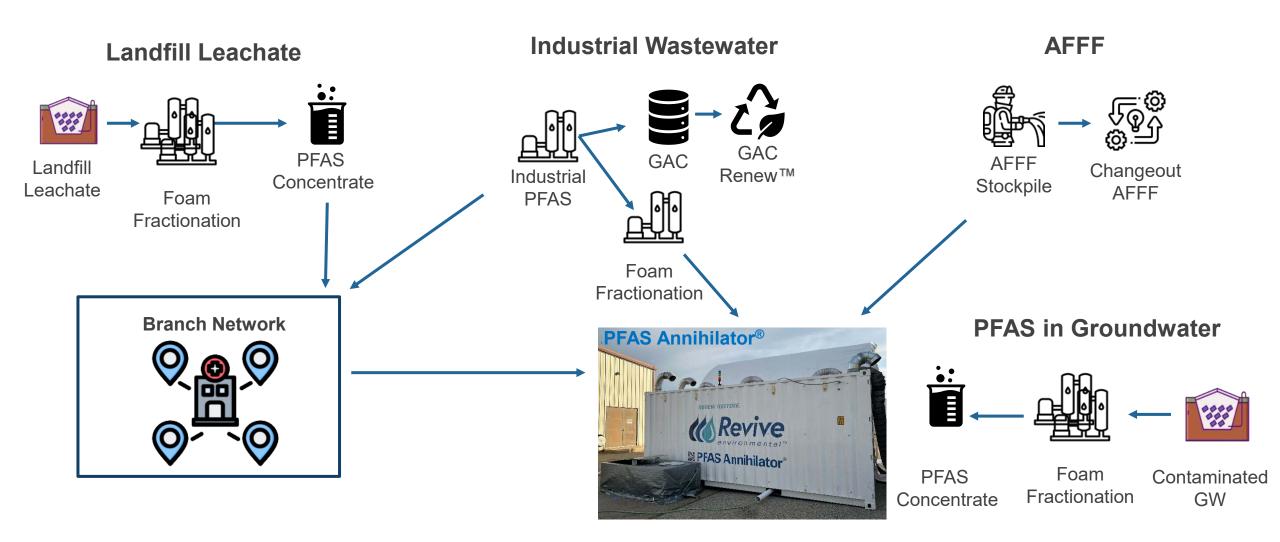
Ready to Scale + Units Available

2 Central Processing Facilities
Michigan + Ohio; expanding across US

7 Mobile Units Available

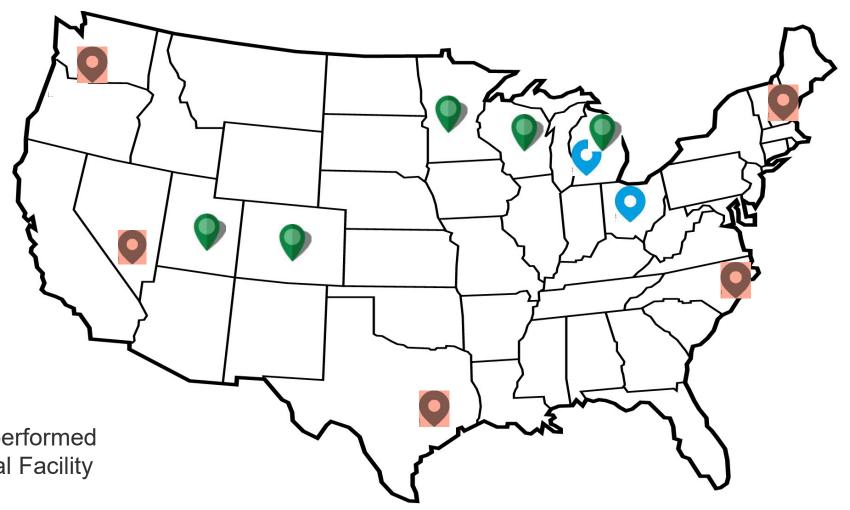
For deployment Onsite or at Revive facility

\$ Cost Competitive


vs Incumbent/Legacy Technologies

Deployment + Commercial Operations

Current Commercial Application of SCWO



PFAS Annihilator® Deployments

- Permitted Facilities
- Customer Deployments (may ship to Regional facility)
- Future Facilities

Does not include Treatability
Assessments which can be performed in Ohio or at another Regional Facility

PFAS Destruction – Aqueous Film-Forming Foam (AFFF)

NH State Take Back Program Summary

Impact to New Hampshire

- Around 10,000 gallons of PFAS-laden aqueous fire-fighting foam (AFFF) removed from the state
 - 10 collection events state-wide
 - Dozens of fire departments participated
- Material to be destroyed in the PFAS Annihilator
- Reduced potential for PFAS discharge in communities around the state
- Eased liability burden for local fire departments

AFFF Concentrate: SCWO Destruction Results

ANSULITE 6% AR-AFFF

			AFFF Production (ng/L)		
	Classification	More Information	Raw AFFF	Effluent Sample	% Destruction
PFBA	Carboxylic Acid	Short Chain	4,880,000	2.41	99.9990%
PFPeA	Carboxylic Acid	Short Chain	1,700,000	2.27	99.9973%
PFHxA	Carboxylic Acid	Short Chain	75,400,000	3.14	99.9999%
PFHpA	Carboxylic Acid	Short Chain	482,000	0.698	99.9971%
PFOA 🖁	Carboxylic Acid	Long Chain	7,050	1.17	99.6681%
PFNA	Carboxylic Acid	Long Chain	6,080	1.01	99.6678%
PFDA	Carboxylic Acid	Long Chain	5,420	0.899	99.6683%
PFUnA	Carboxylic Acid	Long Chain	4,930	0.819	99.6677%
PFDoA	Carboxylic Acid	Long Chain	7,320	1.21	99.6694%
PFBS	Sulfonic Acid	Short Chain	4,300	0.714	99.6679%
PFPeS	Sulfonic Acid	Short Chain	13,100	0.52	99.9206%
PFHxS	Sulfonic Acid	Short Chain	7,070	1.17	99.6690%
PFHpS	Sulfonic Acid	Short Chain	4,960	0.823	99.6681%
PFOS	Sulfonic Acid	Long Chain	6,030	1	99.6683%
PFNS	Sulfonic Acid	Long Chain	6,050	1	99.6694%
8:2FTS	Fluorotelomer	Fluorotelomer	22,300	3.69	99.6691%
PFDS	Sulfonic Acid	Long Chain	3,940	0.653	99.6685%
PFDoS	Sulfonic Acid	Long Chain	4,380	0.726	99.6685%
4:2FTS	Fluorotelomer	Fluorotelomer	1,680,000	5.32	99.9937%
6:2FTS	Fluorotelomer	Fluorotelomer	188,000,000	22.4	99.9998%
PFTrDA	Carboxylic Acid	Long Chain	8,820	1.46	99.6689%
PFTeDA	Carboxylic Acid	Long Chain	10,400	1.73	99.6673%
PFOSA	Carboxylic Acid	Fluorotelomer	4,570	0.758	99.6683%

ANSULITE 6% AR-AFFF

			AFFF Production (ng/L)		
	Classification	More Information	Raw AFFF	Effluent Sample	% Destruction
NMeFOSA Carboxylic	Carbovylis Asid	PFCA and PFSA			
	Carboxylic Acid	precursor	4,840	0.802	99.6686%
NE+EOCA	NEtFOSA Carboxylic Acid	PFCA and PFSA			
NEIFOSA		precursor	2,430	0.402	99.6691%
NMeFOSAA	Carboxylic Acid	PFCA and PFSA			
INIVIEFOSAA	Carboxylic Acid	precursor	15,900	2.64	99.6679%
NEtFOSAA	Carboxylic Acid	PFCA and PFSA			
NEIFUSAA	Carboxyric Acid	precursor	13,900	2.3	99.6691%
NMeFOSE	ANALESCE Contraction A sixt	PFCA and PFSA			
NIVIEFOSE Carbox	Carboxylic Acid	precursor	40,100	6.65	99.6683%
NEtFOSE	Carboxylic Acid	PFCA and PFSA			
NEIFOSE	Carboxylic Acid	precursor	35,200	5.85	99.6676%
HFPO-DA	Carboxylic Acid	Gen X	18,200	3.02	99.6681%
Adona	Carboxylic Acid	3M	16,900	2.8	99.6686%
PFMPA	Carboxylic Acid	UNK	15,300	2.53	99.6693%
PFMBA	Carboxylic Acid	UNK	14,600	2.42	99.6685%
NFDHA	Carboxylic Acid		18,500	3.06	99.6692%
9CI-PF3ONS	Sulfonic Acid		17,900	2.82	99.6849%
11Cl-PF3OUdS	Sulfonic Acid		26,900	4.4	99.6729%
PFEESA	Carboxylic Acid	UNK	5,150	0.855	99.6680%
3:3 FTCA	Fluorotelomer		40,600	6.73	99.6685%
5:3 FTCA	Fluorotelomer		919,000	18	99.9608%
7:3 FTCA	Fluorotelomer		127,000	21	99.6693%

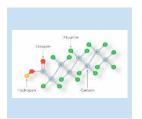
PFAS Destruction – Landfill Leachate

Results: PFAS Destruction of F.F. Hyperconcentrate

Results

- Treated >1 million gallons of landfill leachate
- Treated leachated PFAS concentration was below discharge criteria
- Generated 14 gallons of hyperconcentrate
- Hyperconcentrate destroyed in Revive's PFAS Annihilator

(ND), except for those marked with a ^ which are above the DL but below the Limit of Quantification (LOQ)


4 GenX = Hexafluoropropylene oxide-dimer acid (HFPO-DA). GenX was not detected in the hyperconcentrate but is shown here given inclusion in US EPA MCLs.

PFAS compound ^{1,2}	Hyperconcentrate	Treated Effluent (Sample #1) ³	Treated Effluent (Sample #2) ³
PFOA	7,180,000	0.277	0.263
PFOS	3,380,000	0.232^	0.225
GenX ⁴	ND	0.682	0.679
PFHxS	432,000	0.266	0.264
PFNA	234,000	0.228	0.227
PFBS	301	0.161	0.161
PFHpA	716,000	0.158	0.157
PFHpS	185,000	0.186	0.185
NEtFOSAA	114,000	0.521	0.518
5:3 FTCA	52,600	4.07	4.05
PFHxA	44,600	0.376	0.374
PFOSA	42,600	1.72	0.171
PFPeS	18,400	0.118	0.117
6:2FTS	8,780	5.72^	5.43^
PFPeA	1,500	0.514	0.511

All concentrations are reported in ng/L.
 Only showing PFAS analytes detected in the hyperconcentrate.
 All Treated Effluent results are detection limit (DL) and thus Non-Detect

Summary

>99.99% Destruction

- Short- and Long-chain compounds
- Dilute or Concentrated streams

Highly Efficient

- Short residence time (<30 seconds)
- Heat Exchangers for influent/effluent

Complementary

- Works well with pre-concentration
- Not inhibited by organic co-contaminants

State Take Back Programs

 Safely disposing of 10,000 gallons of material from the state of New Hampshire

Permit Ready

- Effluents below 12 ppt Michigan permit thresholds
- Process underway across other states



Commercial Ready

- Full-scale commercial operation at permitted facilities
- Multiple influence waste streams
- Regional deployments across US

Company Proprietary

Thank You and Questions

RENEW. RESTORE.

(833) END-PFAS · www.revive-environmental.com